INTRODUCTION
Tuberculosis infection is very old in the history of humanity, which complicates the diagnosis and treatment of inflammatory bowel diseases. Although it is rare in the developed countries, intestinal tuberculosis is a prevalent disease in the developing countries. It is life threatening, if not diagnosed. Since the symptoms are non-specific, high index of suspicion is important for diagnosis. Intestinal tuberculosis is diagnosed through clinical presentations (abdominal pain, fever, diarrhea, anemia, high sedimentation rate), radiologic imaging, colonoscopy, tissue biopsy (caseous granuloma) microbiologic assessments (ARB, culture) and PCR. ARB, culture positivity and the presentation of caseous granuloma are essential for the diagnosis. However, there are a few data in terms of the diagnosis of intestinal tuberculosis through PPD and IGRA, therefore further studies are needed. Quantiferon Tb-Gold and Elispot are two different IGRA tests in commercial use.

METHODS
Systematic literature search was carried out in Medline using the following key words: Intestinal tuberculosis AND diagnosis, intestinal tuberculosis AND PCR (ARB OR pathology OR tissue culture OR endoscopic finding), intestinal tuberculosis AND biopsy number, intestinal tuberculosis, intestinal tuberculosis AND tissue culture, intestinal tuberculosis AND PCR (MeSH), Quantiferon, Tuberculosis AND PPD not case report, tuberculosis (MeSH) AND PPD, PPD AND Quantiferon. All of the studies performed in adults were evaluated. Moreover, screening the referred literature, other studies were obtained.

After 3e searching of 1240 articles regarding the methods used in the diagnosis of intestinal tuberculosis and tuberculosis sixty one studies were retrieved. The sensitivity and specificity of the diagnostic methods, comparative methods and the essential methods for diagnosis were determined in the evaluation of the studies. The types of the 61 studies were demonstrated in Table 1, and the distribution of the methods evaluated in the studies, in Table 2.

Table 1. The types of the studies analyzed

<table>
<thead>
<tr>
<th>Type of the study</th>
<th>Number of studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meta analysis</td>
<td>1</td>
</tr>
<tr>
<td>Randomized control</td>
<td>17</td>
</tr>
<tr>
<td>Prospective study</td>
<td>42</td>
</tr>
<tr>
<td>Review</td>
<td>1</td>
</tr>
</tbody>
</table>

doi: 10.4318/tjg.2010.0063

Address for correspondence: Hülya Över HAMZAÇOLU
Department of Gastroenterology
Marmara University, Istanbul, Turkey
Phone: + 90 216 327 10 10 • Fax: + 90 212 559 96 77
E-mail: hulyaoverhamzooglu@yahoo.com
RESULTS

The Numbers of the Biopsies

The number of colonoscopic biopsies from intestinal tuberculosis varies between 2 to 10 in different series. The higher the number of biopsies, the higher is the positivity of ARB and PCR in the tissues (1-13).

Tissue Culture

Tissue culture takes a long time (3-8 weeks) and its sensitivity is low. The studies on tissue culture are in case series. The sensitivity of tissue culture in the diagnosis of intestinal tuberculosis is between 21% and 54.5% and the specificity is 100% (2,6, 10,13,14). The sensitivities of tissue culture, PPD and histopathology in twenty nine cases with intestinal tuberculosis were found to be 40%, 86% and 41%, respectively (6).

In another case series comparing 26 patients with Crohn’s disease and 26 patients with intestinal tuberculosis, the tissue culture sensitivity was between 25% to 35% and the specificity was 100%, the PCR sensitivity was 65.4 and the sensitivity of caseification necrosis was 34.6% (13).

As it was reported by Leung et al., tissue culture sensitivity and ARB positivity were 21% and 84%, respectively, while the sensitivity of caseification necrosis was 84%, in a case series with 19 intestinal tuberculosis (14).

ARB

Unfortunately, demonstration of ARB in the tissues is one of the methods with low sensitivity in the diagnosis of intestinal tuberculosis. Gan et al. re-
ported the ARB sensitivity as 44% and the PCR sensitivity as 75% in a case series including 36 patients with intestinal tuberculosis. In various case series including patients with intestinal tuberculosis, the ARB sensitivities in the tissue were 8%, 20.5%, 44% and 88% while the specificities were 100% (14, 16-18).

PCR

The sensitivity and specificity of PCR may be up to 82.6% and 95%, respectively. Another advantage of the tissue PCR is that the results can be obtained rapidly (10). In a series of 36 patients with intestinal tuberculosis and 26 patients with Crohn’s disease, the PCR sensitivity was 75% and specificity was 100%, and the ARB sensitivity was 44% and specificity was 100% in the diagnosis of intestinal tuberculosis (15). In a relatively larger case series including 60 patients with intestinal tuberculosis and 20 patients with Crohn’s disease, the PCR specificity was 95%, while the sensitivity remained up to 21.6% (19). Ramadass et al. demonstrated fecal PCR sensitivity and specificity as 88% and 100%, respectively (20). In a series of 20 patients with intestinal tuberculosis and 20 patients with Crohn’s disease, PCR sensitivity was 30%, and specificity was 95%, and the sensitivity and specificity for demonstrations of ARB and caseification necrosis were 45% and 100%, respectively, in the diagnosis of intestinal tuberculosis (21). In another case series including 39 patients with intestinal tuberculosis and 30 patients with Crohn’s disease, it was reported that the PCR sensitivity was 64.1% and the specificity was 100%, the ARB sensitivity was 20.5% and the specificity was 100%, and the caseification necrosis sensitivity was 17.9 and specificity was 100%, in the diagnosis of intestinal tuberculosis (17).

PPD-IGRA

- **a. (PPD-IGRA) in tbc**

In view of the fact that there are very few articles concerning the use of PPD and IGRA (interferon

Table 5. The analyzed results regarding PCR in the diagnosis of intestinal tuberculosis

<table>
<thead>
<tr>
<th>Author, year, journal</th>
<th>PCR sensitivity</th>
<th>PCR specificity</th>
<th>Comparator method</th>
<th>Gold standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gan Huatian 1994 Chinese Medical Journal</td>
<td>75%</td>
<td>100%</td>
<td>ARB</td>
<td>(Sen 44%, Spec 100%)</td>
</tr>
<tr>
<td>DN Amar. 2004 JAPI</td>
<td>21.6%</td>
<td>95%</td>
<td>-</td>
<td>ARB, tissue culture, caseous granuloma</td>
</tr>
<tr>
<td>D Hillemann 2005 Int J Tuberc Lung Dis</td>
<td>66.6%</td>
<td>100%</td>
<td>ARB</td>
<td>(Sen 8%, Spec 100%)</td>
</tr>
<tr>
<td>Ramadass Balamurugan 2006 Jour Of Clin Microbiology (Fecal PCR)</td>
<td>88%</td>
<td>100%</td>
<td>ARB</td>
<td>(Fecal PCR)</td>
</tr>
<tr>
<td>Anna B. Pulimood 2008 Am J Clin Pathol</td>
<td>30%</td>
<td>95%</td>
<td>ARB Bx</td>
<td>(caseous granuloma)</td>
</tr>
<tr>
<td>Hua Tian Gan 2002 The American Journal Of Gastroenterology</td>
<td>64.1%</td>
<td>100%</td>
<td>ARB (Sen 20.5%, Spec 100%), (caseous granuloma)</td>
<td>(Sen 17.9%, Spec 100%)</td>
</tr>
</tbody>
</table>

Table 6. The analyzed results regarding the PPD test in the diagnosis of active tbc

<table>
<thead>
<tr>
<th>Author/year, Journal</th>
<th>The risk group</th>
<th>Country</th>
<th>n</th>
<th>Sensitivity (%)</th>
<th>Specificity (%)</th>
<th>PPD-/Quan– (%)</th>
<th>PPD-/Quan+ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irini Gerogianni, Greek population 2008, Respirology</td>
<td>Greece</td>
<td>191</td>
<td>BCG+: 60.2% BCG-44% 74%: active tbc</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Öznur Ak, 2009 Pulmonary, extra pulmonary tbc Jpn J Infect Dis</td>
<td>Turkey</td>
<td>65</td>
<td>68.2% (pulmonary tbc), 62% (extra pulmonary tbc)</td>
<td>-</td>
<td>6-40%</td>
<td>9-60%</td>
<td></td>
</tr>
<tr>
<td>V Bartu, 2008 Tbc The Journal of International Medical Research</td>
<td>Prague</td>
<td>53</td>
<td>62%</td>
<td>-</td>
<td>8%</td>
<td>26%</td>
<td></td>
</tr>
<tr>
<td>Soysal 2008 Int J Tuberc Lung Dis Active pulmonary tbc</td>
<td>Turkey</td>
<td>100 tbc, 47 healthy</td>
<td>(PPD≥10 mm)</td>
<td>70%</td>
<td>%35</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
gamma releasing assay) in the diagnosis of intes-tinal tuberculosis, the use of PPD and IGRA in the diagnosis of tuberculosis were reviewed first. IGRA tests depend on the principle that individuals, whose T cells are sensitized with tuberculosis antigens, generate IFN-gamma when they come across mycobacterial antigens. The two proteins of mycobacterium tuberculosis, ESAT-6 and CFP-10, are addressed. Quantiferon Tb-Gold and Elispot are the two tests in common commercial use. Quantiferon Tb-Gold is widely used in Turkey. Numerous studies demonstrated that IGRA is more sensitive and specific compared with PPD in immunocompetent patients. However, further studies are required (22).

BCG vaccination may result in false PPD positivity. Receiving corticosteroid therapy in the last 1 month or MTX therapy in the last 3 months may result in false PPD negativity. Booster PPD (in 1 to 8 months) is recommended in patients who are PPD (-) and will receive immunomodulatory treatment. Booster PPD helps to diagnose latent tbc up to the rate of 8% to 14% in patients with an inflammatory bowel disease or a rheumatologic disease. False PPD negativity may be obtained in patients with active IBD who are not receiving immunsuppressive treatment. PPD>5 mm should accepted as positive in the diagnosis of latent tbc (22). Meta analyses published in 2007 report PPD sensitivity as %71 and specificity as 97%, and IGRA sensitivity as 76% and specificity as 97%. The rate of PPD (-)/IGRA (-) was %49.3 and PPD (-)/IGRA (+) was 5.1% (23).

In a study from Greece, PPD and IGRA sensitivities were reported as 74% and 85.1%, respectively, in the diagnosis of active tbc. In a study from Turkey, the PPD sensitivities were 68.2% in pulmonary tbc and 62% in extra pulmonary tbc, and the IGRA sensitivities were 75% in pulmonary tbc and 76.2% in extra pulmonary tbc (24, 25). In another study carried out in Japan, 172 infected patients (39 active tbc) were studied. The IGRA sensitivity was found to be 89.7% in the diagnosis of active tbc (26). Nobuyuki Harada et al reported the IGRA sensitivity and specificity as high as 92.6% and 98.8 respectively (27).

b. Intestinal Tbc (PPD-IGRA)
Because of the limited data, the importance of

<table>
<thead>
<tr>
<th>Author/year</th>
<th>The risk group</th>
<th>Country</th>
<th>n</th>
<th>Sensitivity (%)</th>
<th>Specificity PPD-Quan- (%)</th>
<th>PPD-Quan+ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Irini Gerogianni, 2008, Respirology</td>
<td>Greek population</td>
<td>Greece</td>
<td>191</td>
<td>BCG(+) 37.5%, BCG (-) 41.9%, 85.1% (active tbc)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kazue Higuchi, 2008, Tuberculosis</td>
<td>Contaminated with Tbc</td>
<td>Japan</td>
<td>172 (39 active tbc)</td>
<td>64.5%: contaminated 89.7%: Active tbc</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Öznur Ak, 2009, Jpn J Infect Dis</td>
<td>Pulm, extra pulm tbc</td>
<td>Turkey</td>
<td>65</td>
<td>75% (pulum tbc), 76.2% (extra pulm tbc)</td>
<td>-</td>
<td>6-40%</td>
</tr>
<tr>
<td>Nobuyuki Harada, 2008, Journal of Infection</td>
<td>Tbc</td>
<td>Japan</td>
<td>100 Tbc (culture and/or PCR(+)), 168 healthy</td>
<td>QFT-GIT: 92.6%, QFT-GIT/G: 98.8%</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kelly Aparecida, 2008, Clinical and Vaccine Immunology</td>
<td>Pulmonary Tbc</td>
<td>Brazil</td>
<td>29</td>
<td>86%</td>
<td>100%</td>
<td>-</td>
</tr>
<tr>
<td>V Bartu, 2008, The Journal of International Medical Research</td>
<td>Tbc</td>
<td>Prague</td>
<td>53</td>
<td>86%</td>
<td>-</td>
<td>8%</td>
</tr>
<tr>
<td>Ilaria Sauzullo, 2008, Diagnostic Microbiology and Infectious Disease</td>
<td>Suspected with Tbc</td>
<td>Italy</td>
<td>369 (Active tbc 96, latent tbc 42)</td>
<td>73% (active tbc)</td>
<td>89% (active tbc)</td>
<td>-</td>
</tr>
<tr>
<td>Soysal 2008, Int J Tuberc Lung Dis</td>
<td>Active pulm tbc</td>
<td>Turkey</td>
<td>100 tbc, 47 healthy</td>
<td>78%</td>
<td>89.4%</td>
<td>-</td>
</tr>
<tr>
<td>Kazue Higuchi, 2008, Med Microbiol Immunol (46 Pulm, 1 Milier)</td>
<td>Tbc</td>
<td>Japan</td>
<td>47 tbc, 84 healthy</td>
<td>87.2%</td>
<td>98.8%</td>
<td>-</td>
</tr>
</tbody>
</table>
PPD and IGRA tests are unknown in the diagnosis of intestinal TB, and urgent studies are required. In a series of 11 patients with intestinal tuberculosis, PPD sensitivity was determined as 63.9%. In another series including 29 patients with intestinal tuberculosis, it was reported as 86% (2, 6). IGRA test was evaluated in two patients with intestinal tuberculosis and found to be positive in both of them in a case report (28).

The results of the sensitivity and specificity of the diagnostic methods are shown in the tables (Table 3-7).

CONCLUSION

PPD test, at least 8 biopsies, tissue ARB, tissue PCR and tissue culture are recommended in the diagnosis of intestinal TB.

There are not sufficient data regarding the importance of IGRA test in the diagnosis of intestinal tuberculosis. Quantiferon test, is more sensitive in cases with active tuberculosis compared with the PPD test and is not affected by the BCG vaccination. However, this increase in the sensitivity is about 5% and the cost of the IGRA test is prominently higher than PPD test. Therefore, the replacement of the IGRA test with the PPD for routine screening of TB is not likely under the circumstances of our country. Nevertheless, the IGRA test may be used in selected cases. Based on these findings, national recommendations for the diagnosis of intestinal tuberculosis are seen in the box.

Recommendation:

For the diagnosis of intestinal tuberculosis, at least 8 biopsies should be performed during the colonoscopy for histopathologic evaluation. (EL 4 RG C)

Tissue ARB and tissue culture are required for the diagnosis of intestinal TB and the positivity of any of them is prognostic; however their negativity does not exclude intestinal TB diagnosis. (EL 4 RG C)

Tissue PCR evaluation is recommended and its positivity is significant. (Could be tested in old specimens retrospectively which is an advantage.) A negative result does not exclude the diagnosis of TB. (EL 4 RG C)

PPD test should be performed as a complementary test. (EL 4 RG C)

The use of the IGRA test is recommended for the diagnosis of intestinal TB in selective cases. (EL 4 RG C)

REFERENCES

